Soft Magnets to Achieve High-Efficiency Electric Drive Motors of Exceptional Power Density

Jun Cui, Iver Anderson, Matt Kramer

Ames Laboratory June 11, 2019

Project ID: elt234

Overview

Timeline

- Start: October 1, 2019
- End: September 30, 2021
- Percent complete: 20%

Budget

- Total project funding
 - \$450 K (Federal)
 - \$0 K (Cost share)
- Funding for FY 2019: \$150K

Barriers and targets

- Barriers addressed
 - Magnet cost and rare-earth element price volatility
 - Non-rare-earth electric motor performance
- Targets
 - 33 kW/l at \$6/kW with 8x reduction in volume

Partners

- Oak Ridge National Laboratory
- National Renewable Energy Laboratory
- Sandia National Laboratory

Relevance

Objective

 Develop soft magnetic materials suitable for electric motors with exceptionally high power density

Impact

- Reduces iron loss at higher frequency to maintain efficiency
- Improve motor power density
- Maintain system cost-effectiveness

Milestones

Tasks #	Description			2019		
	Soft Magnets to Achieve High-Efficiency Electric Drive Motors of Exceptional Power Density	1	2	3	4	
Yr1-Q1	Establish crucible design for adaptable sheet forming in					
	new melt spinning system.					
Yr1-Q2	Initial demonstration of the planar flow casting system					
	with a model alloy.					
Yr1-Q3	Demonstrate planar flow casting of 6.5% Si steel sheet					
	with 25 mm width					
Yr1-Q4	Characterization of the fabricated sheet					
	(microstructure, electrical and magnetic properties)					

Status

50%

100%

Challenges (6.5% Si Steel)

Advantages of 6.5% Si Steel

FeSi steels	Ms (T)	DC relative permeability	Electric resistivity (μΩ-cm)	Magnet ostriction (ppm)	Core loss W _{10/400} (W/kg)
3.2% Si	1.96	18,000	52	7.8	14.4
6.5% Si	1.80	23,000	82	0.1	5.7

Challenges of 6.5% Si Steel

Too brittle to be manufactured using conventional hot/cold-roll processes

Fe (A) Fe (B) ■ Si (C)					
α- FeSi	A2	All sites are randomly occupied by Fe or Si			
α ₂ - FeSi	B2	C, B sites are randomly occupied by Fe or Si			
α ₁ - FeSi	D0 ₃	C sites are randomly occupied by Fe or Si			

Approach (6.5%Si Steel)

- Rapid solidification suppresses deleterious ordering phases
 - Use the planar flow casting technique to produce wide and thin ductile sheet suitable for motor stator and rotor applications.
- Optimize sheet hardness for high speed stamping process
 - Post casting annealing

	Planned milestones and annual go/no-goes				
2019	 Demonstrate the wide (>25 mm) rapidly solidified 6.5%Si steel sheet is viable for motor applications 				
2020	 Develop laminate material/insulation and stamping/stacking process for 6.5%Si steel sheet 				

¹⁾ G. Ouyang, X. Chen, Y. Liang, C. Macziweski, J. Cui, A review of Fe-6.5%Si alloy – a promising soft magnetic material for sub-kHz application. Journal of Magnetism and Magnetic Materials. 2019 July; 481: 234-250.

4) J. Tangudu, G. Ouyang, J. Cui, Trade Studies for a Manganese Bismuth based Surface Permanent Magnet Machine, 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long beach, CA. 2018 June; 600-05. 6

²⁾ S. Cui, G. Ouyang, T. Ma, C. Macziewski, L. Zhou, M. Kramer, V. Levitas, J. Cui, Thermodynamic and kinetic analysis of the melt spinning process of Fe-6.5 wt.% Si alloy. Journal of Alloys and Compounds. 2019 January; 771: 643-648.

³⁾ G. Ouyang, B. Jensen, W. Tang, K. Dennis, C. Macziewski, S. Thimmaiah, Y. Liang, J. Cui, Effect of wheel speed on magnetic and mechanical properties of melt spun Fe-6.5 wt.% Si high silicon steel. AIP Advances. 2018 May; 8(5): 056111.

Technical Accomplishments

Melt-spinner (0.5 kg capacity)

10 mm wide continuous ribbons using a model alloy (FeSiB)

Technical Accomplishments

The ribbon is highly ductile

Time lapse of a video

As spun ribbon can be wound into a core for magnetic testing.

- Consistently producing 6 mm wide 0.1mm thick Fe-6.5%Si ribbons using small melt spinner.
- As spun ribbon has low Iron loss of 12.3 W/kg at 400Hz 1T.

Responses to Previous Year Reviewers' Comments

N/A (this is the first first review).

Collaboration and Coordination

- Magnetic structure characterization of FeSi steel
- System level performance

Thermal mechanical properties

Nano-synthesis of soft magnetics for high frequency application

Remaining Challenges and Barriers

- Ribbon production
 - Width
 - Thickness
 - Surface finish
 - Processability

0.03m to 0.1mm thick

- Effective use of materials for making stators
 - Modular design
- Composition optimization
 - Manufacturability
 - Performance
 - Core losses
 - Increase induction

Proposed Future Research

Key Challenges

- Demonstration of scalability for industry adoption.
- Optimizing core loses while maintaining manufacturability Casting at such high temperature requires advanced cooling technology for copper wheel.

Verify material manufacturability by coin ring punch test

Future work

- Improve coating, stamping and stacking of thin laminates.
 - ✓ Scalability
 - ✓ Cost

Perfect Fe – 6.5 wt.% Si produced by large melt spinner

Summary

- Modifying traditional planar flow casting methods to simultaneously achieve disordered phase with larger grain size for the 6.5% Si steel.
 - Reduce core losses yet maintain formability
- Demonstrated planar flow casting system with model alloy
 - continuous ribbons with 10 mm width were obtained.
- Developing 25 mm wide ribbon of 6.5% Si steel
 - Melting point is ~300 °C higher than the model alloy

Technical Backup Slides

Choice of ribbon thickness

- Core loss increase with frequency and thickness
- Thinner sample has lower Eddy current loss but higher hysteresis losses
- For low iron loss at 400Hz at high inductor (~1T), and easy of manufacturing,
 0.1mm ribbon is desirable.

